

Fina	al Exam - Second Term	2021/2022	
2nd Year: Electrical Power and Mad	chines Engineering	Time: 3 hours	Marks: 120
Date: Sunday: June 12, 2022	Course: Electric I	Machines (1)	Code: EPM2208

The exam in FOUR pages

Question one [30 Marks]

[a]	Choose the correct answer for the following statements.	It is sufficient to write down the	question number
	followed by your choice in your answer sheet:		[15 Marks]

	tollowed I	by your choice in your answer sheet:		[15 Marks]		
1.	The arm	nature resistance in case of lap wound arm	ature hav	ing Z conductors each conductor of length l		
	meters, cross-sectional area A, m^2 , resistivity ρ , and P-poles will be					
	(a)	$\rho \frac{l}{A} \frac{Z}{P^2}$	(b)	$o \stackrel{l}{\sim} 7$		
				A		
	(c)	$\rho \frac{l}{A} Z \dot{P}$	(d)	$ \rho \frac{\iota}{A} Z \rho \frac{\iota}{A} Z P^2 $		
2:	The com	imutator pitch for simplex lap winding is				
	(a)	+1	(b)	-1		
*	(c)	+1 or -1	(d)	average pitch		
3.	The emf	induced in a conductor of machine driven a	t 600 rpm	, the peak value of flux density is 1.0 Wb/m²,		
	diameter	of machine 2.0 m and length of machine 0.3	0 m is			
	(a) .	41.83 V	(b)	29.58 V		
	(c)	9.42 V	(d)	18.84 V		
4.	A 4-pole	dynamo with wave wound armature has 51	slots cont	aining 20 conductors in each slot. The induced		
	emf is 35	57 V and the speed is 8500 rpm. The flux per	pole will	be		
	(a)	3.5 mWb	(b)	1.2 mWb		
	(c)	14 mWb	(d)	21 mWb		
5.	The com	mutating flux produced by interpole must be	proportio			
	(a)	armature current	(b)	field current		
	(c)	both armature and field currents	· (d)	none of the above		
6.			d constar	nt and voltage applied across its armature is		
	20 0	d by 5%, the speed of the motor will				
	(a)	increase by 5%	(b)	reduce by 5%		
	(c) .	remain unchanged	(d)	depends on other factors		
7.				the lines. If now the load is reduced such that		
			f the mad	chine (neglecting the saturation and armature		
4	resistanc	e) would be				
	(a)	unchanged	(b)	reduced by 50%		
	(c)	reduced by 100%	(d)	increased by 100%		
8.				at 1000 rpm with rated voltage. If the applied		
	voltage i	s half of the rated voltage, the motor will run				
	(a)	2000 rpm	(b)	1000 rpm		
	(c)	750 rpm	(d)	500 rpm		
9.	What ha	ppens to the speed when the flux is reduced	by 10%	in a 200 V dc shunt motor having an armature		
	resistanc	e of 0.2Ω carrying a current of $50 A$ and π	inning at	960 rpm prior to weakening of field. The total		
- 10	torque m	ay be assumed constant. Neglect losses.				
	(a)	1250 rpm	(b)	1060 rpm		
	(c)	920 rpm	(d)	576 rpm		
10.	A 240 V	dc series motor takes 40 A when giving it	s rated or	utput at 1500 rpm. Its resistance is 0.3 Ω . The		

[b] State true (√) or false (×) and correct the false statements. It is sufficient to write down the question number followed by your choice in your answer sheet: [15 Marks]

1.	The speed of a dc motor will decrease to an extremely low value when the field winding gets disconnected while in normal operation.
2.	When a cumulatively compounded long shunt dc motor runs as a generator, it will operate as a differentially compounded generator.
3.	Series dc motor has a better speed regulation than the cumulative compound motor.
4.	If the external resistance, used for starting the dc motor, is left in the armature circuit, it would cause the operating speed of the motor to be increased.

5.	No-load losses in a dc machine consist only of the friction losses.
6.	The starting torque of a dc series motor is more than that of a dc shunt of the same rating.
7.	While controlling the speed of a dc shunt motor, the applied voltage should be varied to achieve a constant torque drive.
8.	It is necessary to ensure, before starting a dc motor, that the field circuit is closed, and starting resistance is at minimum value to develop higher torque at starting and restrict armature current to a safer value.
9.	A dc shunt motor is driving a constant torque load with normal excitation. If the field current is halved, then the motor will run slightly higher than double the rated speed.
10.	Negative speed regulation means drop of speed with the increase in load.
11.	Torque-armature current characteristic of a dc motor is called the mechanical characteristic.
12:	If a dc series motor is allowed to run at light loading condition, its speed will become lower than the compounded type dc motor.
13.	The emf induced in a dc motor opposes the applied voltage.
14.	The generated emf and armature current are in the same direction in case of dc motors.
15.	In a dc motor, energy conversion would not have been possible but for production of back emf in the armature.

Question Two [30 Marks]

- a) A dc shunt motor is mechanically connected to a constant-torque load. When the armature is connected to a 120 V dc supply, it draws an armature current of value 10 A and runs at 1800 rpm. The armature resistance is $R_a = 0.1 \Omega$. Suddenly, the filed circuit is opened and the flux drops to the residual flux, which is only 5% of the original flux.

 [15 Marks]
 - (i) **Determine** the value of the armature current immediately after the field circuit is opened (i.e., before any speed change happens while the motor is still runs at 1800 rpm).
 - (ii) Determine the final change of the speed at which the motor will run after the field circuit is opened.
- b) A dc series motor draws 5 amperes at starting and develops 5 N.m torque when connected to a 5 V dc supply. The series motor is mechanically coupled to a load. It draws 10 amperes when connected to a 120 V dc supply and drives the load at 300 rpm. Assume magnetic linearity.

 [15 Marks]
 - (i) **Determine** the torque developed by the motor.
 - (ii) **Determine** the value of the external resistance required to be connected in series with the motor.

Question Three [30 Marks]

- a) Explain, with all necessary equations and figures, the voltage buildup in a shunt DC generator. What if a shunt generator is started and no voltage builds up? What could be wrong? [15 Marks]
- b) A separately excited DC generator is rated at 172 kW, 430 V, 400 A, and 1800 r/min. The magnetization curve is shown in Figure 1. This machine has the following characteristics: $R_A = 0.05 \Omega$, $R_F = 20 \Omega$, $R_{adj} = 0$ to 300 Ω , $V_F = 430$ V, $N_F = 1000$ turns per pole. [15 Marks]
 - (i) If the variable resistor R_{adj} in this generator's field circuit is adjusted to 63 Ω and the generator's prime mover is driving it at 1600 r/min, what is this generator's no-load terminal voltage?

- (ii) What would its voltage be if a 360-A load were connected to its terminals? Assume that the generator has compensating windings.
- (iii) What would its voltage be if a 360-A load were connected to its terminals, but the generator does not have compensating windings? Assume that its armature reaction at this load is 450 A turns.
- (iv) What adjustment could be made to the generator to restore its terminal voltage to the value found in part (i)?
- (v) How much field current would be needed to restore the terminal voltage to its no-load value? (Assume that the machine has compensating windings.) What is the required value for the resistor R_{adj} to accomplish this?

Question Four [30 Marks]

- a) Explain, with all necessary equations and figures, how a diverter resistor makes it possible to realize all the voltage characteristics of cumulatively compounded DC generator? [15 Marks]
- b) The magnetization curve for a shunt DC generator is shown in Figure 2. This curve was taken at a speed of 1800 r/min. The generator is rated at 6 kW, 120 V, 50 A, and 1800 r/min. Its field circuit is rated at 5A. The data of the machine: $R_A = 0.18 \Omega$, $R_F = 20 \Omega$, $R_{adj} = 0$ to 40 Ω , $N_F = 1000$ turns/pole. The shunt field resistor R_{adj} is adjusted to 10 Ω , and the generator's speed is 1800 r/min. Plot the curve then: [15 Marks]
 - i. What is the no-load terminal voltage of the generator?
 - ii. Assuming no armature reaction, what is the terminal voltage of the generator with an armature current of 20 A? 40 A?
 - iii. Assuming an armature reaction equal to 300 A turns at full load, what is the terminal voltage of the generator with an armature current of 20 A? 40 A?

With Best Regards

Dr. Abdelsalam Ahmed & Dr. Mohamed Gamal Hussien

Tanta University

Year: 2nd Year Power Eng. and Electrical Machines Dep.

Faculty of Engineering

Date: June 15th, 2022 (2nd term) Allowed time: 3 hours

Course Title: Engineering Mathematics III(B)

Total Marks: 85

Course Code: PME2209

No. of pages: 2

Please answer the following questions:

Question (1)

(45Marks)

(a) Evaluate the following integrals

(a-1)
$$I = \int_0^{2\pi} \frac{1}{(2 + \cos\theta)^2} d\theta$$

(a-2)
$$I = \int_{2+i}^{6+8i} e^{4z} dz$$
, along any open contour C .

- (b) Suppose that $\Phi(z) = \phi(x, y) + i \psi(x, y) = e^x \cos y + i e^x \sin y$ represents the complex potential, in volts, for some electrostatic configuration.
 - (b-1) Use the complex potential to find the complex electric field at x = 1 and y = 1/2 (meter).
 - (b-2) Obtain the complex electric field at the same point by first finding and using the electrostatic potential $\phi(x, y)$.
 - (b-3) Assuming the configuration lies within a vacuum, find the components D_x and D_y of the electric flux density vector at x = 1 and $y = \frac{1}{2}$. In m.k.s. units, the permittivity $\varepsilon = 8.85 \times 10^{-12}$ for vacuum.
 - (b-4) What are the values of ϕ and ψ at x = 1 and y = 1/2?
- (c) Find the principal value of $\left[e\left(-1-\sqrt{3}\ i\right)\right]^{3\pi\ i}$.
- (d) Given $\Gamma(1.25) = 0.9064$, evaluate the following integral $\int_0^{\frac{\pi}{3}} \frac{\left(\cos\left(\frac{3\theta}{2}\right)\right)^{-\frac{1}{2}}}{4-4\cos\left(3\theta\right)} d\theta.$
- (e) Find all z values such that tanh z = 2.

Question (2)

(40Marks)

(a) Obtain the series solution of the following differential equation around $x_0 = 0$

$$x^2y'' + (x^2 - 2x)y' + 2y = 0$$

- (b) Prove Cauchy-Goursat theorem; $\oint_C f(z)dz = 0$, for any analytic function f(z) on a simple closed contour C.
- (c) Let C denotes the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$. Evaluate each of the following integrals

$$(c-1) I = \oint_{\mathcal{C}} \frac{z}{2z+1} dz$$

$$(c-2) I = \oint_C \frac{\cos z}{(z^2 + 8)} dz$$

Please, consider page 2/2

(d) use the identities; $\frac{d}{dx}(x^{-k}J_k) = -x^{-k}J_{k+1}$ and $\frac{d}{dx}(x^kJ_k) = x^kJ_{k-1}$, to prove that

$$\frac{d}{dx}(xJ_k(x)J_{k+1}(x)) = x\left[J_k^2(x) - J_{k+1}^2(x)\right].$$

(e) Express graphically the set of values for z with $|z| + Re(z) \le 1$.

Best of Luck

Dr. Ali Mehrez

Department: Elec. Power and Machines Engineering Total Marks: 120 Marks

Title: Electric power engineering (2)

Date: 19/6/2022

Course Code: EPM2207 Allowed time: 3 hr Year: Second year No. of Pages: (2)

Answer the following questions

Problem number (1)

(40 Marks)

a) A small network has an admittance matrix as shown. Draw the single line diagram of the network. Eliminate nodes 1 and 2 from the network and write the new admittance matrix. Draw the impedance diagram of the network after node elimination.

$$Y_{BUS} = j \begin{bmatrix} -8 & 4 & 3 & 2 \\ 4 & -5 & 3 & 0 \\ 3 & 3 & -10 & 4 \\ 2 & 0 & 4 & -5 \end{bmatrix}$$

b) A 15000 kVA, 8.5 kV three-phase generator (G) having a reactance of 20% is connected through a delta-star transformer to a high-voltage transmission line having a total series reactance of 50 Ω. At the load end of the line is a star– star step-down transformer. Both transformer banks are composed of single-phase transformers connected for three-phase operation. Each of the three transformers composing each bank is rated 6667 kVA, 10-100 kV, with a reactance of 10%. The load, represented as impedance, is drawing 10000 kVA at 12.5 kV and 90 % power factor lagging. Draw the one-line diagram and mark base kV in the three parts of the system. Then draw the impedance diagram showing all impedances in per unit. Choose a base of 10000 kVA, 12.5 kV in the load circuit. Determine the voltage at the terminals of the generator.

Problem number (2) (20 Marks)

- a) A three-phase, 50 Hz transmission line has the following parameters per phase: resistance = 12 Ω, inductance = 63.69 mH and capacitance = 1.06 μF. The line supplies a balance load of 50 MW at 132 kV and 0.8 lagging power factor. Using the nominal T-method, calculate the ABCD constants of the line. Using a suitable scale, draw the combined receiving-end and sending-end power circle diagram and find the sending end voltage, current, and complex power. Calculate the Transmission line efficiency and voltage regulation.
- b) Explain in details the main required steps to determine the general ABCD constants experimentally.
- c) A series capacitor bank is to be installed at the midpoint of the 300-mile line. The ABCD constants for 150 mile of line are: A=D=0.9534 ∠ 0.3, B=90.33 ∠ 84.1 Ω and C=0.001014 ∠ 90.1. The ABCD constants of the series capacitor: A=D=1 ∠ 0, B=146.6 ∠ -90 Ω and C=0. Determine the equivalent ABCD constants of the series combination of the line

P.T.O.

Page:1/2

Problem number (3) (30 Mar)	ks)
a) Aided with suitable sketches, show the main differences	between series and
parallel capacitance for voltage regulation improvement.	(8)
b) Compare between automatic voltage regulator, tap changing	ng transformer and
capacitance for voltage control in TL.	(8)
c) A motor having a consumption of 150 kW is connected with	h a load of 250 kW
having a lagging power factor of 0.7. If the combined load h	as a power factor of
0.9 lagging. What is the value of the leading kVA supplied	by the motor and at
what power factor is it working?	(8)
d) Derive the condition of the optimal correction of power facto	r? (6)
Problem number (3) (30 Ma	rks)
a) What are the main Types of HVDC Transmission and mention	on the advantages of
HVDC Transmission?	(6)
b) Explain the importance of the following components that	at are related to the
underground cables: Metallic sheath and armoring.	(8)
c) Explain how you can obtain the capacitance of 3-core cables	experimentally. (8)
d) A single-core lead sheathed cable is graded by using three	dielectrics of relative
permittivity 5, 4 and 3respectively. The conductor diameter	is 2 cm and overall
diameter is 8 cm. If the three dielectrics are worked at the s	ame maximum stress
of 40 kV/cm, find the safe working voltage of the cable. What	at will be the value of
safe working voltage for an ungraded cable, assuming the	same conductor and
overall diameter and the maximum dielectric stress?	(8)
Good Luck	
Course Examination Committee	oli dinge or male
Dr. Samir Dawoud Dr.	Eman Gaber
I THE OWNER OF THE PARTY OF THE	
The state of the s	Page:2/2

Electrical Power and Machines Program/ Department

Tanta Univers	ity		Faculty of	Engineering	
Course Title	Power Electronics (1)	Academic Year 2022/2023	Course Code	EPM2209	
Year/ Level	2 nd Year	Final Exam			
Date	26 June 2022	No. of Pages (2)	Allowed time	3 hrs	
	emarks: (Answer the following questions, Clarify your answers with the suitable				
<u>remarks.</u>		can Total Marks: 75 Mar			
Question N		Cuit I Olive 1/2 william / S 1/2 wi	1137		
	ne correct answer(14 Points				
	ment is true for latching curre				
	ed to conduction process of dev				
	ed to turn off process of the dev				
	ed to turn on process of the dev				
		f the following, is not a current t	riggering device	,	
a) MOSFE		c) Thyristor d) G		•	
,		TRUE for an ideal power diode?	.1.0		
		everse saturation current is zero			
	voltage drop is zero and reverse				
	voltage drop is non zero and reversi				
	voltage drop is non zero and revers				
	, dv/dt protection is achieved				
			d) I in conice a	ial. COD	
	ss SCR b) RL in series with		d) L in series v	vith SCR	
	vard blocking state, a thyristo				
	rent, low voltage	b) medium current, la			
	ent, large voltage	d) low current, mediu		4:0	
a) Power N		for high frequency (>100 KHz) s			
	MOSFET b) BJT r circuit is used to limit the ra	e) benetiky diode	d) None of Th	ese	
			C 14	COD	
a) Conduct			se of voltage acro	SS SCR	
	ling diode is connected across				
a) reduce the			negative reversal	voltage drop	
	ge regulator, TRIACS cannot				
a) R-L Loa				uctive load	
o. In a three	phase (50Hz) full converter, t	he ripple frequency in output vo	Itage?		
a) 50 Hz	b) 100 Hz	c) 150 Hz d) 30	0 Hz		
		ne voltage and current remain no			
a) Type-A	b) Type-E	c) Type-C d) Ty	/pe-D		
		y and voltage can be controlled?			
	cyclo-converter and ac voltage		nd cyclo-controlle		
	nverter and ac voltage controlle		nd ac voltage con	troller	
13. The peak	nverse voltage, in case of a br	idge rectifier, for each, the diod	e is: (where Eo =	Peak value	
of input volt					
a) E _o	b) 2E _m	c) 3E _m d) 4I	Em		
14. A three-pl	ase diode bridge rectifier is f	ed from a 400 V RMS, 50 Hz, th	ree-phase AC so	urce. If the	
		aneous output voltage is equal to			
a) 400 V	b) √2 × 400	,	d) √2	/400	
b) A delay	ved full-wave rectified sinus	soidal current has an average	value equal to	half its	
	um value. Find the delay ar		(4 Points		
	1 10	m 10.17	(· z oznec	,	

In a 1φ, half wave controlled rectifier if the input voltage is 400 sin314t, what is the

average output voltage for a firing angle of 60°.

(3 Points)

Electrical Power and Machines Program/ Department

Faculty of Engineering

Tant	a	University	
Y STATE	-68	Chircisity	

d) In a 3-φ semi converter for firing angle less than or equal to 60°, what will be the conduction of the wheeling diode. (5 Points)

Question Number (2) (13 Points)

- a) Compare in table between the single-phase half-wave rectifier, center-tap rectifier, and full-wave rectifier, in terms of (9 points)
 - a) Circuit

b) Efficiency

c) Ripple factor

d) TUF

- e) Components
- f) PIV
- b) Explain why it is better to use single-phase semiconverter for resistive load rather than full converter. (2 points)
- c) Among the single phase controlled converters, choose the best converter which is suitable for one quadrant, two quadrants, and four quadrants. (2 points)

Question Number (3) (17 Points)

- a) Explain the reason for needing the single phase series converter. (2 points)
- b) Single-phase series semiconverter is used to feed a resistive load of 20 Ω . The supply voltage is 220 V and $N_p:N_s = 2:1$. If the average output voltage is 75 % of maximum average voltage, determine: (a) the converters delay angles; (b) average and rms value of output voltage; (c) the average and rms value of output current; (d) the average and rms value of thyristors currents; (e) the rectifier efficiency and ripple factor of input current; (f) the transformer utilization factor and input power factor. (15 points)

Question Number (4) (20 Points)

- a) For three phase full converter sketch the waveforms of output voltage at 75 degrees for resistive load and highly inductive load. (5 points)
- b) A three phase semiconverter is operated from three-phase Y-connected 380V, 50 Hz supply and load resistance is 30 Ω . If it is required to obtain an average output of 63 % from the maximum possible average of output voltage, calculate: (a) the converter delay angle; (b) average and rms output currents; (c) the average and rms SCR currents; (d) rectifier efficiency, transformer utilization factor and input power factor.
- Give a brief discussion about the basic methods of power factor improvements. (5 points)

End of questions ...

Examination Committee:

Dr. Eman Gaber Dr. Mahmoud F. Elmorshedy

Page 2 of 2

جامعة طنطا

ولية الهندسة

				كليه الهندسه
	كود المقرر	امتحان		
الثانية كهرباء قوى	الفرقة	دور يونيو للعام الجامعي ۲۰۲۲،۲۱	التقارير الفنية	اسم المقرر
2022/06/29م	تاريخ الامتحان	عدد صفحات الامتحان (١)	۲ ساعات	زمن الامتحان
جه الامتحان: ٥٠ درجه	در		لة.	الاجابه بترتيب الأسا
			145	السؤال الاول:
		ة التقرير؟	التي تتعلق بصياغ	ا- اذكر اهم الاخطاء
			ير المكتوبة.	ب- اذكر أهمية التقار
			ر الهندسية.	ج- اذكر امثله للتقاري
		ات؟	متنتاجات والتوصي	د- لماذا تتم كتابة الاس
		ប៉	علامة صح او خط	السؤال الثاني: ضع
	تختلف حسب طبيعة نج وخاصة الفعل الم ت.	و توصيات أو تفاصيل للدرا، المحتملين للتقرير. ويشتمل على عدة عناصر لجمل الفعلية في مناقشة النتا جردة أو عند عرض المبرراه ضرورية لفهم الموضوع. البحوث التي يمكن أن تجر	مة كلما تنوع القراء ، الأكبر من التقرير ثمة يمكن استخدام ا عراض الحقائق الم رئ معلومات ليست	2- تزداد أهمية المقده 3- المقدمة هي الجزء 4- في النتائج والمناقد المضارع في است 5- الخلفية تعطى القار
				ا- عرف كل من:
			سالة – الخطاب.	
		ثلة.		ب- ماهي التقارير الو
	1			ج۔ ما هي اهداف حيا
	٠,٠	عاتها _ الجهة الصادرة اليو	من حيث: موضو	ج- ما هي أهداف كتا. د- اذكر انو اع التقار بر
	٧.	عاتها – الجهة الصادرة اليه	ر من حيث: موضو	د- اذكر انواع التقارير
				د- اذكر انواع التقارير السؤال الرابع:
فني عن زياره لمعاينة) في التقارير ؟	الاعتبار عند استخدام الجمل	ني يجب اخذها في	د- اذكر انواع التقارير السؤال الرابع: ا- ما اهم الخطوات الن
ِ فني عن زياره لمعاينة) في التقارير ؟		ني يجب اخذها في	د- اذكر انواع التقارير السؤال الرابع: ا- ما اهم الخطوات الن ب- طبق مثالا عمليا
ِ فني عن زياره لمعاينة) في التقارير ؟	الاعتبار عند استخدام الجمل	ني يجب اخذها في	د- اذكر انواع التقارير السؤال الرابع: ا- ما اهم الخطوات الن